"""
meca - Plot focal mechanisms.
"""
from readline import insert_text
import numpy as np
import pandas as pd
from pygmt.clib import Session
from pygmt.exceptions import GMTError, GMTInvalidInput
from pygmt.helpers import build_arg_string, fmt_docstring, kwargs_to_strings, use_alias
def data_format_code(convention, component="full"):
"""
Determine the data format code for meca -S option.
See the meca() method for explanations of the parameters.
Examples
--------
>>> data_format_code("aki")
'a'
>>> data_format_code("gcmt")
'c'
>>> data_format_code("partial")
'p'
>>> data_format_code("mt", component="full")
'm'
>>> data_format_code("mt", component="deviatoric")
'z'
>>> data_format_code("mt", component="dc")
'd'
>>> data_format_code("principal_axis", component="full")
'x'
>>> data_format_code("principal_axis", component="deviatoric")
't'
>>> data_format_code("principal_axis", component="dc")
'y'
>>> for code in ["a", "c", "m", "d", "z", "p", "x", "y", "t"]:
... assert data_format_code(code) == code
...
>>> data_format_code("invalid")
Traceback (most recent call last):
...
pygmt.exceptions.GMTInvalidInput: Invalid convention 'invalid'.
>>> data_format_code("mt", "invalid") # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
pygmt.exceptions.GMTInvalidInput:
Invalid component 'invalid' for convention 'mt'.
"""
# Codes for focal mechanism formats determined by "convention"
codes1 = {
"aki": "a",
"gcmt": "c",
"partial": "p",
}
# Codes for focal mechanism formats determined by both "convention" and
# "component"
codes2 = {
"mt": {
"deviatoric": "z",
"dc": "d",
"full": "m",
},
"principal_axis": {
"deviatoric": "t",
"dc": "y",
"full": "x",
},
}
if convention in codes1:
return codes1[convention]
if convention in codes2:
if component not in codes2[convention]:
raise GMTInvalidInput(
f"Invalid component '{component}' for convention '{convention}'."
)
return codes2[convention][component]
if convention in ["a", "c", "m", "d", "z", "p", "x", "y", "t"]:
return convention
raise GMTInvalidInput(f"Invalid convention '{convention}'.")
@fmt_docstring
@use_alias(
R="region",
J="projection",
A="offset",
B="frame",
N="no_clip",
V="verbose",
X="xshift",
Y="yshift",
c="panel",
p="perspective",
t="transparency",
)
@kwargs_to_strings(R="sequence", c="sequence_comma", p="sequence")
def meca(
self,
spec,
scale,
convention=None,
component="full",
longitude=None,
latitude=None,
depth=None,
plot_longitude=None,
plot_latitude=None,
event_name=None,
**kwargs,
):
"""
Plot focal mechanisms.
Full option list at :gmt-docs:`supplements/seis/meca.html`
{aliases}
Parameters
----------
spec: dict, 1D array, 2D array, pd.DataFrame, or str
Either a filename containing focal mechanism parameters as columns, a
1- or 2-D array with the same, or a dictionary. If a filename or array,
`convention` is required so we know how to interpret the
columns/entries. If a dictionary, the following combinations of keys
are supported; these determine the convention. Dictionary may contain
values for a single focal mechanism or lists of values for many focal
mechanisms. A Pandas DataFrame may optionally contain columns latitude,
longitude, depth, plot_longitude, plot_latitude, and/or event_name
instead of passing them to the meca method.
- ``"aki"`` — *strike, dip, rake, magnitude*
- ``"gcmt"`` — *strike1, dip1, rake1, strike2, dip2, rake2, mantissa,
exponent*
- ``"mt"`` — *mrr, mtt, mff, mrt, mrf, mtf, exponent*
- ``"partial"`` — *strike1, dip1, strike2, fault_type, magnitude*
- ``"principal_axis"`` — *t_exponent, t_azimuth, t_plunge, n_exponent,
n_azimuth, n_plunge, p_exponent, p_azimuth, p_plunge, exponent*
scale: str
Adjusts the scaling of the radius of the beachball, which is
proportional to the magnitude. Scale defines the size for magnitude = 5
(i.e. scalar seismic moment M0 = 4.0E23 dynes-cm)
convention: str
``"aki"`` (Aki & Richards), ``"gcmt"`` (global CMT), ``"mt"`` (seismic
moment tensor), ``"partial"`` (partial focal mechanism), or
``"principal_axis"`` (principal axis). Ignored if `spec` is a
dictionary or dataframe.
component: str
The component of the seismic moment tensor to plot. ``"full"`` (the
full seismic moment tensor), ``"dc"`` (the closest double couple with
zero trace and zero determinant), ``"deviatoric"`` (zero trace)
longitude: int, float, list, or 1d numpy array
Longitude(s) of event location. Will override the longitudes in ``spec``
if ``spec`` is a dict or DataFrame.
latitude: int, float, list, or 1d numpy array
Latitude(s) of event location. Will override the latitudes in ``spec``
if ``spec`` is a dict or DataFrame.
depth: int, float, list, or 1d numpy array
Depth(s) of event location in kilometers. Will override the depths in
``spec`` if ``spec`` is a dict or DataFrame.
plot_longitude: int, float, list, or 1d numpy array
Longitude(s) at which to place beachball. List must be the length of the
number of events. Will override the plot_longitude in ``spec`` if
``spec`` is a dict or DataFrame
plot_latitude: int, float, list, or 1d numpy array
Latitude(s) at which to place beachball. List must be the length of the
number of events. Will override the plot_latideu in ``spec`` if ``spec``
is a dict or DataFrame.
offset: bool or str
Offsets beachballs to the longitude, latitude specified in the last two
columns of the input file or array, or by ``plot_longitude`` and
``plot_latitude`` if provided. A small circle is plotted at the initial
location and a line connects the beachball to the circle. Specify pen
and optionally append **+s**\ *size* to change the line style and/or size
of the circle.
no_clip : bool
Does NOT skip symbols that fall outside frame boundary specified by
*region* [Default is False, i.e. plot symbols inside map frame only].
{J}
{R}
{B}
{V}
{XY}
{c}
{p}
{t}
"""
kwargs = self._preprocess(**kwargs) # pylint: disable=protected-access
if isinstance(spec, (dict, pd.DataFrame)): # spec is a dict or pd.DataFrame
param_conventions = {
"aki": ["strike", "dip", "rake", "magnitude"],
"gcmt": [
"strike1",
"dip1",
"rake1",
"strike2",
"dip2",
"rake2",
"mantissa",
"exponent",
],
"mt": ["mrr", "mtt", "mff", "mrt", "mrf", "mtf", "exponent"],
"partial": ["strike1", "dip1", "strike2", "fault_type", "magnitude"],
"pricipal_axis": [
"t_value",
"t_azimuth",
"t_plunge",
"n_value",
"n_azimuth",
"n_plunge",
"p_value",
"p_azimuth",
"p_plunge",
"exponent",
],
}
# determine the convention based on dict keys
for conv, paras in param_conventions.items():
if set(paras).issubset(set(spec.keys())):
convention = conv
break
else:
if isinstance(spec, dict):
msg = "Keys in dict 'spec' do not match known conventions."
else:
msg = "Columns in pd.DataFrame 'spec' do not match known conventions."
raise GMTError(msg)
print(longitude, latitude, depth)
# override the values in dict/DataFrame if parameters are explicity specified
if longitude is not None:
spec["longitude"] = np.atleast_1d(longitude)
if latitude is not None:
spec["latitude"] = np.atleast_1d(latitude)
if depth is not None:
spec["depth"] = np.atleast_1d(depth)
if plot_longitude is not None: # must be in string type
spec["plot_longitude"] = np.atleast_1d(plot_longitude).astype(str)
if plot_latitude is not None: # must be in string type
spec["plot_latitude"] = np.atleast_1d(plot_latitude).astype(str)
if event_name is not None:
spec["event_name"] = np.atleast_1d(event_name).astype(str)
print(spec)
# convert dict to pd.DataFrame so columns can be reordered
if isinstance(spec, dict):
spec = pd.DataFrame(spec)
print(spec)
# expected columns are:
# longitude, latitude, depth, focal_parameters, [plot_longitude, plot_latitude] [event_name]
newcols = ["longitude", "latitude", "depth"] + param_conventions[convention]
if "plot_longitude" in spec.columns and "plot_latitude" in spec.columns:
newcols += ["plot_longitude", "plot_latitude"]
kwargs["A"] = True
if "event_name" in spec.columns:
newcols += ["event_name"]
# reorder columns in DataFrame
spec = spec.reindex(newcols, axis=1)
elif isinstance(spec, np.ndarray) and spec.ndim == 1:
# Convert 1d array into 2d array
spec = np.atleast_2d(spec)
# determine data_foramt from convection and component
data_format = data_format_code(convention=convention, component=component)
# Assemble -S flag
kwargs["S"] = data_format + scale
with Session() as lib:
# Choose how data will be passed into the module
file_context = lib.virtualfile_from_data(check_kind="vector", data=spec)
print(spec)
with file_context as fname:
lib.call_module(module="meca", args=build_arg_string(kwargs, infile=fname))